

Which foodweb?

- Freshwater Delta
- Low-Salinity Zone (LSZ, ~ 0.5 5 or 10)
- Salty regions South Bay-San Pablo Bay

Main points

- 1. Plankton are quasi-Lagrangian particles
- 2. Limits to primary production
- 3. Consequent limits to zooplankton production
- 4. Spatial subsidies
- 5. How to design an estuarine copepod
- 6. Can we fix the low productivity?
- 7. Some key questions

Some old stuff, some new!

1. Plankton are quasi-Lagrangian particles

1. Plankton are quasi-Lagrangian particles

Effect of particle behavior on vertical position

Depth as Fraction of Water Column

1.0

1128 particles (max)

Along-Channel Velocity, m s⁻¹

Kimmerer Gross MacWilliams In Press Limnol. Oceanogr.

Effect of particle behavior on vertical position

Areas of circles ∞ number of particles

1128 particles (max)

Kimmerer Gross MacWIlliams In Press Limnol. Oceanogr.

Effect of particle behavior on transport

Tidal Biased ↓ on ebb ↑ on flood

Proportion of Particles

Lost at Sea

>10

5 - 10

0.5 - 5.0

0.0 - 0.5

Days since Release

Effect of particle behavior on transport

Proportion of Particles

Lost at Sea

>10

5 - 10

0.5 - 5.0

0.0 - 0.5

Days since Release

2. Limits to primary production: light

Primary Productivity (mgC m⁻³)

2. Limits to primary production: Grazing

2. Limits to primary production: Grazing

Kimmerer & Thompson 2014 Estuaries & Coasts

2. Limits to primary production: Size fractions

111 paired sets of ¹⁴C incubations 5 µm and GF/F filter

2. Limits to primary production: Net growth 1987-2008

2. Limits to primary production: Ammonium inhibition

Ammonium Inhibition

2. Limits to primary production: Conceptual Model

2. Limits to primary production: Conceptual Model

¹⁴C Measurements

Mixing diagrams

Growth rate & efficiency

Dilution experiments

Nutrient bioassays

Clam biomass and filtration rate (spatially intensive surveys)

Symbols: Integration and Application Network, UMD Center for Environmental Science

3. Limits to zooplankton production: Low-salinity foodweb

3. Limits to zooplankton production: Foodweb

3. Limits to zooplankton production: slow development

Kimmerer et al. Fall Habitat study

3. Limits to zooplankton production: slow development

Development Rate ∞ Phytoplankton Biomass

Sac SJR

- Freshwater
- Low Salinity

3. Limits to zooplankton production: predation

York et al. 2013 Estuaries & Coasts & Slaughter et al. in prep.

4. Spatial subsidies: Conceptual model

4. Spatial subsidies: Conceptual model

4. Spatial subsidies: Conceptual model

4. Spatial subsidies: phytoplankton

2014 Estuaries & Coasts

4. Spatial subsidies: phytoplankton

4. Spatial subsidies: copepod distributions

Pseudodiaptomus forbesi

Fall Habitat study

4. Spatial subsidies: copepods in the Low-Salinity Zone

Pseudodiaptomus forbesi

5. How to design an estuarine copepod: Method 1

- Phytoplankton are small
- Low food supply
- Most fish are visual predators
- Few filter-feeding predators

Eat ciliates
Low feeding rate
Small, cryptic
Slow growth OK

5. How to design an estuarine copepod: Method 2

- Phytoplankton are small
- Low food supply
- Most fish are visual predators
- Few filter-feeding predators

Don't eat 'em

Eat copepods

Grow fast

Doesn't matter

Acartiella sinensis

Slaughter et al. Fall Habitat study

5. How to design an estuarine copepod: Method 3

- Phytoplankton are small
- Low food supply
- Most fish are visual predators
- Few filter-feeding predators

Be omnivorous

??

Spatial refuge

Doesn't matter

Pseudodiaptomus forbesi

Adults

Copepodites

Nauplii

Kimmerer et al. Fall Habitat study

6. Can we fix the low productivity?

- Alter productivity directly
- Increase the large-scale spatial subsidy
- Use small-scale spatial subsidies
 - Marsh restoration

6. Can we fix the low productivity?

Ammonium? Clams? Turbidity?

6. Can we fix the low productivity? Large-scale export

High flow increases subsidy to Low-Salinity zone

But it costs a bundle!

3 months @ \$0.10 / m³ or \$120/AF

6. Can we fix the low productivity? Large-scale export

High flow increases subsidy to Low-Salinity zone

Total capacity of major Sacramento Valley reservoirs

6. Can we fix the low productivity? Marsh export

Shallow water:
High growth
Benthic grazing
Habitat for planktivores

Production:
Total organic matter
Phytoplankton
Zooplankton

++

±

-'?

6. Can we fix the low productivity? Marsh export

Open Water

How much stimulation
by marsh production?
Phytoplankton
Zooplankton
Detritus
Nekton

6. Can we fix the low productivity? Export of plankton

Marsh

Area 1000 ha

Depth 2m

Copepods 23 mgC m⁻³

Growth rate μ 0.1 d⁻¹

Residence time 10d

Open Water

Volume 0.5 km³

Copepods 3 mgC m⁻³

Resulting subsidy: 3% of existing copepod biomass d⁻¹

6. Can we fix the low productivity? Literature review

Flux of zooplankton to and from marshes

- Lake zooplankton abundance low in shoals
- Marsh in NY a sink for zooplankton
- Australian tidal creek a sink for copepods
- Saltmarsh a sink for copepods, source for larvae
- China Camp: marsh a sink for mysids
- Liberty Island: source or sink

7. Some key questions: marsh subsidy

7. Some key questions: marsh subsidy

7. Some key questions: phytoplankton production

7. Some key questions: phytoplankton production

7. Some key questions: phytoplankton production

Summary

- Plankton move with the water
 - Use their frame of reference
- Three reasons for low foodweb productivity
 - Light limitation
 - Grazing
 - Ammonium concentration
- Three unlikely remedies
 - Increase outflow
 - Get rid of clams
 - Plankton farms
- Three potential remedies
 - Reduce ammonium loading
 - Marshes as plankton factories
 - Detrital output of marshes

Will this be science-based, or faith-based?

Summary

- Plankton move with the water
 - Use their frame of reference
- Three reasons for low foodweb productivity
 - Light limitation
 - Grazing
 - Ammonium concentration

Thanks to:

Anne Slaughter, Toni Ignoffo, Lindsay Sullivan, Karen Kayfetz, Jan Thompson, April Hennessy, Ed Gross, Michael MacWilliams, Erwin Van Nieuwenhuyse,

. . .

Funding from
Delta Science Program
Interagency Ecological Program
National Science Foundation

Subsidies from marsh: phyto model

Area
Depth
Phytoplankton
Growth rate

Microzoo grazing
Residence time

1000 ha 2m 900 mgC m⁻³ 0.86 d⁻¹ 60% μ 10d Volume Phytoplankton

0.5 km³ 73 mgC m⁻³

Resulting subsidy: 5% of existing phytoplankton biomass d⁻¹

Lesson 9: Foodweb interactions can be subtle

Zooplankton as "ecological filters" *

How does variation in phytoplankton productivity translate to variability in fish recruitment?

	Efficiency of transfer to fish	
Characteristic	Low	High
Phytoplankton size	Small	Large
Seasonal pattern (vs. fish)	Unpredictable	Predictable
Sensitivity to food	Low	High
Reproductive mode	Egg carriers	Broadcast spawners
Palatability / nutrition	Low	High
Zooplankton size (fish size)	Small	Large
Detectability (feeding mode)	Low	High
Catchability (feeding mode)	Low	High
Foodweb length	Long	Short